Size-selected agglomerates of SnO2 nanoparticles as gas sensors
نویسندگان
چکیده
The effect of nanoparticle structure on gas sensing performance is investigated. Size-selected nanostructured SnO2 agglomerate particles for gas sensors were made by scalable flame spray pyrolysis. These particles were polydisperse up to 12 m in diameter and consisted of primary particles of 10 nm in grain and crystal size as measured by transmission electron microscopy, x-ray diffraction, and Berner low pressure impactor BLPI . The effect of agglomerate size on thermal stability and sensing of ethanol vapor 4–100 ppm and CO 4–50 ppm was investigated by selecting nearly monodisperse fractions of these agglomerates by the BLPI. Sensor layers made with these size-fractionated agglomerates exhibited higher thermal stability and dramatically enhanced sensitivity for both analytes than layers made with polydisperse agglomerates. This is attributed to their aggregate or hard agglomerate structure exhibiting small sinter necks between their constituent primary particles of tin dioxide that had also a narrow size distribution as expected for particles generated in flames. Upon further sintering of these optimally sized, nanostructured agglomerates, grain and neck growth degraded their superior sensitivity, supporting the proposed mechanism of their enhanced sensitivity: optimal primary particle necking. © 2009 American Institute of Physics. doi:10.1063/1.3212995
منابع مشابه
Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors
The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0-15 SiO2 wt%) has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C,...
متن کاملSnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design
Response of highly sensitive SnO2 semiconductor carbon monoxide (CO) gas sensors based on target gas CO quasi-molecular-imprinting mechanism design is investigated with gas concentrations varied from 50 to 3000 ppm. SnO2 nanoparticles prepared via hydrothermal method and gas sensor film devices SC (exposed to the target gas CO for 12 h after the suspension coating of SnO2 film to be fully dried...
متن کاملNanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity.
Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method. The structure, morphology, chemical state and specific surface area were analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2-sorption studies, respectively. The SnO2 nanoparticle cluster matrix consists of tens of thousands of Sn...
متن کاملGas Sensing Properties of SnO2 Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method
The effect of SnO2 surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO2-based gas sensors to CO and H2. At the sam...
متن کاملHydrogen Gas Sensing Properties of Multiwalled Carbon Nanotubes Network Partially Coated with SnO2 Nanoparticles at Room Temperature
In the present work, hydrogen gas sensor of modest sensitivity utilizing functionalized multiwalled carbon nanotubes partially decorated with tin oxide nanoparticles (F-MWCNTs/SnO2) has been fabricated. This sensing material was characterized by scanning electron microscopy (SEM). In addition, a remarkable finding was that the F-MWCNTs/SnO2 sensor shows good sensitivity as compared to F-MWCNTs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009